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1
DATA SHARING AMONG CONDITIONALLY
INDEPENDENT PARALLEL FILTERS

BACKGROUND

There are applications in the field of sensing and estimation
where separate and distinct local filters are used to estimate
the global state of a system. When these local filters satisfy the
property of conditional independence given a set of shared
states, information can be passed between filters that allow a
distributed and decentralized solution to be maintained, with-
out approximations, that is equivalent to a global central filter.
In addition, the filter partitioning resulting from this method
has the potential for a reduction in the computation complex-
ity of some applications since the conditionally independent
formulation may result in a set of filters each of which is of
smaller dimension than a single centralized filter.

One application of this data sharing technique is in Simul-
taneous Localization and Mapping (SLAM), in which infor-
mation obtained by a sensor on a mobile platform is processed
to obtain an estimate of its own position while building a map
of the environment. For example, in a paper by Pinies and
Tardos, Scalable SLAM Building Conditionally Independent
Local Maps, Proceedings ofthe 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3466-
3471, San Diego, Calif. (2007), a submapping solution to the
SLAM problem is presented where the submaps are formu-
lated to be conditionally independent of each another. In this
approach, amethod to share information among submaps that
exploits the conditional independence formulation is pro-
vided. This data exchange method is termed “back propaga-
tion.” In this technique, local filters were built up sequentially
and the data sharing was done in a single process at the end of
amission. The information in the data sharing process flowed
in one direction starting with the most recent local submap
and was propagated back through the chain of previous sub-
maps.

The primary limitation with prior approaches such as the
back propagation technique is that they do not account for the
situations when new information originates from more than
one filter (i.e., “submap”) simultaneously. Such approaches
specifically assume that the currently active submap is the
most update-to-date submap. As a result, this submap has the
latest and newest information, which means that all informa-
tion must flow from it backwards through the chain of earlier
submaps.

SUMMARY

A method for data sharing between conditionally indepen-
dent filters is provided. The method comprises initializing a
plurality of conditionally independent filters operating in par-
allel, processing data measurements in each of the condition-
ally independent filters, sharing conditioning node estimates
among the conditionally independent filters, merging the
shared conditioning node estimates in each of the condition-
ally independent filters, and performing a conditional update
in each of the conditionally independent filters.

BRIEF DESCRIPTION OF THE DRAWINGS

Understanding that the drawings depict only exemplary
embodiments and are not therefore to be considered limiting
in scope, the exemplary embodiments will be described with
additional specificity and detail through the use of the draw-
ings, in which:
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FIG. 1 is a flow diagram of a method for data sharing
between conditionally independent parallel filters in a system
of filter processing modules;

FIG. 2 is a flow diagram of a method that is performed by
each conditionally independent filter of a filter processing
module to carry out data sharing between parallel filters in a
system of filter processing modules;

FIG. 3 is a block diagram illustrating conditionally inde-
pendent data sharing between two conditionally independent
parallel filters according to one embodiment;

FIGS. 4A and 4B show an exemplary singly-connected line
network of conditionally independent filters in which the
method for data sharing can be implemented;

FIGS. 5A and 5B depict an exemplary singly-connected
tree network of conditionally independent filters in which the
method for data sharing can be implemented; and

FIGS. 6A and 6B illustrate an exemplary cyclic network of
conditionally independent filters in which the method for data
sharing can be implemented.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific exemplary
embodiments. It is to be understood, however, that other
embodiments may be utilized and that logical, mechanical,
and electrical changes may be made.

A method for data sharing in a system of conditionally
independent filters operating in parallel is provided, where
each parallel filter operates within its own filter processing
module. The method generally includes initializing the con-
ditionally independent parallel filters in one or more filter
processing modules, processing data measurements in each
of the conditionally independent filters, and sharing condi-
tioning node estimates among the conditionally independent
filters. The shared conditioning node estimates are then
merged in each of the conditionally independent filters, and a
“conditional update” (which will be discussed hereafter) is
performed in each of the conditionally independent filters.

The present approach solves a more general problem of
data exchange in conditionally independent filters (or “sub-
maps”) that run in at the same time, that is, in parallel. The
parallel filters are formulated to be conditionally independent
of one another but also while allowing each parallel filter to
process and apply new information (e.g., from local sensor
data) simultaneously, where the new information processed
by the filter of each module is independent of all the other new
information processed within the other modules. Thus, when
information is shared it may “collide” with other new infor-
mation from other modules. This “collision” of information is
not addressed in prior approaches. The method described
herein addresses this problem. Here forward, the update pro-
cess in this data exchange methodology will be referred to as
the “conditional update” to better describe what the update
step is doing in more general terms (as opposed to back
propagation). Additionally, in the present nomenclature, the
filters of each conditionally independent pair of filters share a
common set of states that is referred to as the “conditioning
node.”

In the present method of data sharing among conditionally
independent parallel filters, the direction of new information
flow is not restricted to originate from one module at a time.
Thus, data exchange can run simultaneously between the
parallel filters. The filters described herein can be generally
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applied to Bayesian tracking filters, including Gaussian fil-
ters, which model and estimate the stochastic states of a
system.

When two conditionally independent filters need to simul-
taneously share their new information, it is necessary to
merge the estimates of the conditioning node by running a
fusion algorithm. Since a conditioning node estimate is sim-
ply a set of state estimates, the problem of merging condi-
tioning node estimates from separate filters is a problem of
“track fusion.” This is in contrast to “sensor fusion” where
measurement data from a sensor must be fused with state
estimates within a filter. Track fusion deals with the problem
of fusing distinct, but correlated, state estimates (i.e. “tracks™)
that come from separate estimators. This is a well-known
problem and many algorithms to solve this have been pro-
posed. Track fusion typically is discussed regarding the
fusion of only two tracks at a time, but in general may apply
to an arbitrary number of tracks. Some exemplary approaches
to track fusion are disclosed in Chang et al., MAP Track
Fusion Performance Evaluation, Proceedings of the Fifth
International Conference on Information Fusion, vol. 1, pp.
512-519 (2002), the disclosure of which is incorporated
herein by reference.

FIG. 1 is a flow diagram of a method 100 for data sharing
between conditionally independent parallel filters in a system
of filter processing modules. At the start of method 100, a
filter in each of the modules is initialized (block 110). The
modules of the system may represent various vehicles or
persons operating in a collaborative network, for example,
each of which have a navigation filter in an onboard naviga-
tion system; or, as another example, each module may repre-
sent a subfilter component of a larger filtering method, such as
ahierarchical or federated approach. Although, this method is
well suited for distributed and decentralized applications it is
not required. For example, modules for each of the condition-
ally independent filters may each run on the same hardware
platform or even in the same processor. The measurements in
each of the modules are then processed (block 120). The
processed measurements can be based on various sensor data
obtained by one or more sensors on the vehicles or persons,
for example. A conditioning node estimate is obtained by
each of the modules and shared among each of the modules
(block 130). The conditioning node estimates can be based on
filter states and prior data measurements, for example. The
conditioning node estimates are then merged using a track
fusion algorithm (block 140). A conditional update is then run
for each of the modules (block 150). The foregoing steps are
then repeated (starting at block 120) as long as needed to
provide for data sharing between the modules.

FIG. 2 is a flow diagram of a method 200 that is performed
by each conditionally independent filter of a filter processing
module to carry out data sharing between parallel filters in a
system of filter processing modules. For example, method
200 can be formed for all filter processing modules i, where
i=2 to N number of modules. At the start of method 200, a
filter of module i is initialized (block 210), and the filter of
module 1 is propagated forward in time (block 214). The
method 200 then determines whether one or more measure-
ments have been made (block 218). If yes, the filter of module
i1is updated with the measurements (block 222), and a deter-
mination is made whether it is time for conditionally inde-
pendent data sharing (block 226). If measurements have not
been made, the method directly determines whether it is time
for conditionally independent data sharing (block 226), as no
filter update is necessary. If it is not time for conditionally
independent data sharing, the foregoing steps are repeated
(starting at block 214). When a determination is made that it
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is time for conditionally independent data sharing (block
226), a current estimate of the conditioning node is extracted
by marginalization (block 230). The conditioning node esti-
mate is then sent to one or more other modules in the system
at a data output (block 234).

As shown in FIG. 2, module i receives shared conditioning
node estimates from the one or more other modules in the
system at a data input (block 238). The shared conditioning
node estimates are then merged with the conditioning node
estimate of module i using a track fusion algorithm (block
242). The filter of module i is then updated with the merged
conditioning node estimates to provide a conditional update
(block 246). The method 200 is then repeated (starting at
block 214) to provide for continuing data sharing as needed.

FIG. 3 is a block diagram illustrating a method 300 for
conditionally independent data sharing between two parallel
filters according to one embodiment, which shows the inter-
connections between system variables and various process-
ing blocks for the parallel filters operating simultaneously.
The data flows from and to both modules involved in the data
sharing step such that data is exchanged in multiple directions
during the same update step. The two parallel filter processing
modules can be in a system of two platforms, for example,
with one filter processing module in each of the platforms.
The two parallel filters of each filter processing module are
conditionally independent and have the following state vec-
tors:

x,=/a cj¥{(first filter),

x>=/b c]¥(second filter),
with joint probability density functions (pdfs):

plx)=pla,c)

px2)=p(b,c)

where a is the unique state(s) of the first filter, b is the unique
state(s) of the second filter, and ¢ is the common states
between filters 1 and 2. If the density functions are condition-
ally independent of one another given state c, then:

plable)=p(alc)p(blc)

As shown in FIG. 3, at some point in time the first and
second filters are initialized from a common posterior distri-
bution that is conditioned on the measurement set Z (p(a, b,
clZ)) at 310. This posterior distribution is marginalized to
give a first pdf estimate (p, (a, clZ)) at 314 for the first filter,
and a second pdf estimate (p,(b, cIZ)) at 318 for the second
filter. Thereafter, the first filter receives an independent mea-
surement z, at 322, and its pdf estimate is updated (p, (a, clZ,
7,)) at 326. Simultaneously, the second filter receives an
independent measurement z, at 330, and its pdf estimate is
updated (p,(b, clZ, z,)) at 334. Conditioning node estimates
in the form of a marginalized distribution 338 (p,(clZ, z,))
from the first filter and a marginalized distribution 342 (p,
(clZ, z,)) from the second filter are then extracted and input
into a processing block 346. The marginalized distributions
338 and 342 are merged in a track fusion algorithm 350,
which outputs a merged conditioning node estimate (p(clZ,
7,,7,)) at 354. A conditional update 358 is then run for the first
filter with the merged conditioning node estimate. Likewise,
a conditional update 362 is run for the second filter with the
merged conditioning node estimate. The conditional update
358 produces a globally optimal estimate (p,(a, clZ,z,, z,)) at
366 for the first filter, and the conditional update 362 produces
a globally optimal estimate (p,(b, clZ, z,, z,)) at 370 for the
second filter. The foregoing steps can be repeated as new
measurements are input into the first and second filters.
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The present data sharing technique can be implemented in
various types of networks. In the context of this invention, the
notion of “network™ does not refer to the physical layout or
architecture of the system, but rather refers to the “network”
of probabilistic relationships among the filters of all modules.
It is an abstract logical network, not a physical one, but these
networks may still be drawn as typical graphs and analyzed
with well-known methods of graph theory. It is in this context
that the term “network™ will be used. The graphs of these
networks will be referred to as “dependence networks™ or
“dependence graphs.” While the present technique may be
applied most efficiently to dependence graphs of singly-con-
nected networks, it may also be applied to more general cyclic
networks. Such dependence networks arise anytime there is a
group of filters where the state vectors estimated by each of
the filters share states or are related to each other. In these
scenarios, it is possible to apply the method of conditionally
independent data sharing, if valid and tractable conditioning
nodes can be defined for all filter pairs.

FIG. 4A shows an exemplary network topology depen-
dence graph of a singly-connected line network 400 in which
the present data sharing technique can be implemented. This
network topology graph is an undirected graph whose edges
represent probabilistic dependence links between nodes in
the graph. In these graphs, any probabilistic links between
modules must be represented in the graph by an edge. If all
links are not properly represented in the dependence topol-
ogy, probabilistic inconsistency will result and may even lead
to solution divergence. Probabilistic dependence may arise in
a number of ways. For example, suppose there is a collabo-
rative navigation application involving vehicles a and b. A
probabilistic link is created between vehicles a and b if there
has been at any time a measurement made that simultaneously
observes states of both vehicles, such as a relative range
measurement. Additionally, in SLAM applications, probabi-
listic links are formed between filters of each module when
those modules each process independent measurements that
observe the same landmarks or features (with the additional
implicit assumption and those landmarks or features can be
associated across the modules). The network 400 includes a
plurality of filter modules represented individually as nodes
S1, S2, and S3, which are connected serially in the network
such that each module’s node is directly dependent upon at
most two other nodes. The conditioning nodes, once defined,
for all modules in network 400 will be unique to each pair of
modules. It should be understood that additional module
nodes Si can be connected serially in network 400.

FIG. 4B depicts network 400 as a Bayesian network with
conditioning nodes C, ,, C,; defined and shown. These nodes
facilitate the conditional update data exchange methodology.
All Bayesian networks are a subset of graphs called directed
acyclic graphs (DAGs). The nodes C,,, C,; represent the
states that make the filters of nodes S1, S2, and S3 condition-
ally independent. More generally, a node C,; represents the
states that make the filters of nodes Si and Sj in network 400
conditionally independent given C,;.

FIG. 5A illustrates an exemplary network topology depen-
dence graph of a singly-connected tree network 500 in which
the present data sharing technique can be implemented. This
network topology graph is an undirected graph whose edges
represent probabilistic dependence links between nodes. The
network 500 includes a plurality of module nodes S1, S2, S3,
S4, S5, and S6, which are connected such that individual
filters may be directly dependent upon an arbitrary number of
other filters. There are no cycles in the network, and condi-
tioning nodes are unique to each pair of modules. It should be
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understood that additional module nodes Si can be connected
in network 500 in various configurations as long as the tree
structure is preserved.

FIG. 5B depicts network 500 as a Bayesian network DAG
with conditioning nodes C, ,, C,3, C,4, C,5, and C,4 defined
and shown. These nodes facilitate the conditional update data
exchange methodology. More generally, a node C; represents
the states that make the filters of nodes Si and Sj in network
500 conditionally independent given C,;.

FIG. 6A illustrates an exemplary network topology depen-
dence graph of a cyclic network 600 in which the present data
sharing technique can be implemented. Cyclic networks, that
is, any network containing at least one cycle, reduce to singly-
connected networks in a properly formulated conditionally
independent Bayesian network. In network 600, module
nodes S1-54 form a cycle, whereas module nodes S5-S7 are
singly-connected but are still coupled to the network via the
link between nodes S4 and S5. It should be understood that
additional module nodes Si can be connected to the network
600 in arbitrary configurations.

FIG. 6B depicts network 600 as a Bayesian network DAG
with conditioning nodes C, ,5,, C 5, Cs4, and Cs, defined and
shown. These nodes facilitate the conditional update data
exchange methodology. More generally, a node C,,
represents the states that make the filters of nodes S1, S2, . ..
Sn conditionally independent given C,, , in network 600.

A computer or processor used in the present system and
method can be implemented using software, firmware, hard-
ware, or any appropriate combination thereof, as known to
one of skill in the art. These may be supplemented by, or
incorporated in, specially-designed application-specific inte-
grated circuits (ASICs) or field programmable gate arrays
(FPGAs). The computer or processor can also include or
function with software programs, firmware, or other com-
puter readable instructions for carrying out various process
tasks, calculations, and control functions used in the present
method and system.

The present methods can be implemented by computer
executable instructions, such as program modules or compo-
nents, which are executed by at least one processor. Gener-
ally, program modules include routines, programs, objects,
data components, data structures, algorithms, and the like,
which perform particular tasks or implement particular
abstract data types.

Instructions for carrying out the various process tasks,
calculations, and generation of other data used in the opera-
tion of the methods described herein can be implemented in
software, firmware, or other computer readable instructions.
These instructions are typically stored on any appropriate
computer program product that includes a computer readable
medium used for storage of computer readable instructions or
data structures. Such a computer readable medium can be any
available media that can be accessed by a general purpose or
special purpose computer or processor, or any programmable
logic device.

Suitable computer readable storage media may include, for
example, non-volatile memory devices including semicon-
ductor memory devices such as Random Access Memory
(RAM), Read Only Memory (ROM), Electrically Erasable
Programmable ROM (EEPROM), or flash memory devices;
magnetic disks such as internal hard disks or removable disks;
optical storage devices such as compact discs (CDs), digital
versatile discs (DVDs), Blu-ray discs; or any other media that
can be used to carry or store desired program code in the form
of computer executable instructions or data structures.

Example Embodiments

Example 1 includes a method for data sharing between
conditionally independent filters, the method comprising ini-
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tializing a plurality of conditionally independent filters oper-
ating in parallel, processing data measurements in each of the
conditionally independent filters, sharing conditioning node
estimates among the conditionally independent filters, merg-
ing the shared conditioning node estimates in each of the
conditionally independent filters, and performing a condi-
tional update in each of the conditionally independent filters.

Example 2 includes the method of Example 1, wherein the
conditionally independent filters each comprise a Bayesian
tracking filter for stochastic state estimation.

Example 3 includes the method of Example 2, wherein the
Bayesian tracking filter comprises a Gaussian filter.

Example 4 includes the method of any of Examples 1-3,
wherein the data measurements are based on sensor data
processed by one or more sensors.

Example 5 includes the method of any of Examples 1-4,
wherein the conditioning node estimates are based on states
and prior data measurements processed in the conditionally
independent filters.

Example 6 includes the method of any of Examples 1-5,
wherein the shared conditioning node estimates are merged
with a track fusion algorithm.

Example 7 includes the method of any of Examples 1-6,
wherein each of the conditionally independent filters is
located in a separate filter processing module of a plurality of
filter processing modules whose filters are related to each
other in a dependence network.

Example 8 includes the method of Example 7, wherein the
dependence network comprises a singly-connected network.

Example 9 includes the method of any of Examples 1-8,
wherein each of the conditionally independent filters is
located in a separate filter processing module that is part of a
collaborative network.

Example 10 includes a method for data sharing between a
first conditionally independent filter operating in parallel with
one or more other conditionally independent filters, the
method comprising (a) initializing the first conditionally
independent filter; (b) propagating the first conditionally
independent filter forward in time; (c) determining whether
one or more measurements have been made; (d) if one or more
measurements have been made, updating the first condition-
ally independent filter with the measurements, and determin-
ing whether it is time for conditionally independent data
sharing; (e) if one or more measurements have not been made,
determining whether it is time for conditionally independent
data sharing; (f) if it is not time for conditionally independent
data sharing, repeating the method starting at (b); (g) if it is
time for conditionally independent data sharing, extracting a
current conditioning node estimate from the first condition-
ally independent filter; (h) sending the current conditioning
node estimate to the one or more other conditionally indepen-
dent filters; (i) receiving one or more shared conditioning
node estimates from the one or more other conditionally
independent filters; (j) merging the one or more shared con-
ditioning node estimates with the current conditioning node
estimate; and (k) updating the first conditionally independent
filter with the merged conditioning node estimates.

Example 11 includes the method of Example 10, wherein
the one or more shared conditioning node estimates and the
current conditioning node estimate are merged with a track
fusion algorithm.

Example 12 includes the method of any of Examples
10-11, wherein each of the first conditionally independent
filter and the one or more other conditionally independent
filters is located in a separate module of a plurality of mod-
ules, where the filters are probabilistically dependent upon
one another in a network.
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Example 13 includes the method of Example 12, wherein
the network comprises a singly-connected network.

Example 14 includes the method of any of Examples
10-13, wherein the method further comprises (1) after updat-
ing the first conditionally independent filter with the merged
conditioning node estimates, repeating the method starting at
().

Example 15 includes a computer program product, com-
prising: a non-transitory computer readable medium having
instructions stored thereon executable by a processor to per-
form a method for data sharing between a first conditionally
independent filter operating in parallel with one or more other
conditionally independent filters according to Example 10.

Example 16 includes a system for data sharing between
conditionally independent filters, the system comprising a
first conditionally independent filter, a second conditionally
independent filter operating in parallel with the first condi-
tionally independent filter, and one or more processors in
operative communication with the first and second condition-
ally independent filters. The one or more processors are con-
figured to execute processor readable instructions to perform
a method for data sharing comprising initializing the first
conditionally independent filter and the second conditionally
independent filter with the same data measurement set,
wherein the first conditionally independent filter has a first
probability density function estimate and the second condi-
tionally independent filter has a second probability density
function estimate; receiving a first independent measurement
at the first conditionally independent filter; updating the first
probability density function estimate with the first indepen-
dent measurement; receiving a second independent measure-
ment at the second conditionally independent filter; updating
the second probability density function estimate with the
second independent measurement; extracting a conditioning
node estimate from the first conditionally independent filter;
extracting a conditioning node estimate from the second con-
ditionally independent filter; combining the conditioning
node estimates from the first and second conditionally inde-
pendent filters to produce a merged conditioning node esti-
mate; running a conditional update for the first conditionally
independent filter with the merged conditioning node esti-
mate; and running a conditional update for the second condi-
tionally independent filter with the merged conditioning node
estimate.

Example 17 includes the system of Example 16, wherein
the merged conditioning node estimate is produced using a
track fusion algorithm.

Example 18 includes the system of any of Examples 16-17,
wherein each of the first and second conditionally indepen-
dent filters is located in a separate module of a plurality of
modules, where the filters are probabilistically dependent
upon one another in a network.

Example 19 includes the system of Example 18, wherein
the network comprises a singly-connected network.

Example 20 includes the system of any of Examples 16-19,
wherein the first conditionally independent filter is located in
a first platform of a collaborative network, and the second
conditionally independent filter is located in a second plat-
form of the collaborative network.

The present invention may be embodied in other specific
forms without departing from its essential characteristics.
The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is therefore indicated by the appended claims
rather than by the foregoing description. All changes that
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.



US 9,104,752 B2

9

What is claimed is:
1. A method for data sharing between a plurality of filters,
the method comprising:

initializing at least a first filter and a second filter that
operate in parallel with each other, the first filter having
a first state vector (x, ), the second filter having a second
state vector (X,), the first filter estimating a distribution
of'the first state vector that contains a first subset (x,,) and
a third subset (x_), the second filter estimating a distri-
bution of the second state vector that contains a second
subset (x,,) and the third subset (x_), such that:

x,=[,, ] and x,= [xfb];

wherein:

the first subset includes one or more unique states of the
first filter, the second subset includes one or more unique
states of the second filter, and the third subset includes
one or more common states between the first and second
filters;
the first subset, the second subset, and the third subset are
selected such that the first subset and the second subset
are conditionally independent given the third subset; and

the third subset is a conditioning node for the first filter and
the second filter;

processing data measurements in the first filter;

sharing conditioning node estimates with the second filter

when it is time for conditionally independent data shar-
ing;

merging the shared conditioning node estimates in each of

the filters; and

performing a conditional update in each of the filters.

2. The method of claim 1, wherein the filters each comprise
a Bayesian tracking filter for stochastic state estimation.

3. The method of claim 2, wherein the Bayesian tracking
filter comprises a Gaussian filter.

4. The method of claim 1, wherein the data measurements
are based on sensor data processed by one or more sensors.

5. The method of claim 1, wherein the conditioning node
estimates are based on states and prior data measurements
processed in the filters.

6. The method of claim 1, wherein the shared conditioning
node estimates are merged with a track fusion algorithm.

7. The method of claim 1, wherein each of the filters is
located in a separate filter processing module of a plurality of
filter processing modules whose filters are related to each
other in a dependence network.

8. The method of claim 7, wherein the dependence network
comprises a singly-connected network.

9. The method of claim 1, wherein each of the filters is
located in a separate filter processing module that is part of a
collaborative network.

10. A method for data sharing between a plurality of filters,
the method comprising:

(a) initializing at least a first filter and a second filter that

operate in parallel with each other, the first filter having
a first state vector (X, ) the second filter having a second
state vector (X,), the first filter estimating a distribution
of'the first state vector that contains a first subset (x,,) and
a third subset (x_), the second filter estimating a distri-
bution of the second state vector that contains a second
subset (x,,) and the third subset (x_), such that:

x =[] and x,=[, ¥

wherein:
the first subset includes one or more unique states of the
first filter, the second subset includes one or more unique
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states of the second filter, and the third subset includes
one or more common states between the first and second
filters;

the first subset, the second subset, and the third subset are
selected such that the first subset and the second subset
are conditionally independent given the third subset; and

the third subset is a conditioning node for the first filter and
the second filter;

(b) propagating the first filter forward in time;

(c) determining whether one or more measurements have
been made;

(d) if one or more measurements have been made: (i)
updating the first filter with the measurements; and (ii)
determining whether it is time for conditionally inde-
pendent data sharing;

(e) if one or more measurements have not been made,
determining whether it is time for conditionally inde-
pendent data sharing;

(D if it is not time for conditionally independent data shar-
ing, repeating the method starting at (b);

(g) if it is time for conditionally independent data sharing,
extracting a current conditioning node estimate from the
first filter;

(h) sending the current conditioning node estimate to the
second filter;

(1) receiving one or more shared conditioning node esti-
mates from the second filter;

(j) merging the one or more shared conditioning node
estimates with the current conditioning node estimate;
and

(k) updating the first filter with the merged conditioning
node estimates.

11. The method of claim 10, wherein the one or more
shared conditioning node estimates and the current condition-
ing node estimate are merged with a track fusion algorithm.

12. The method of claim 10, wherein each of the first filter
and the second filter is located in a separate module of a
plurality of modules, where the filters are probabilistically
dependent upon one another in a network.

13. The method of claim 12, wherein the network com-
prises a singly-connected network.

14. The method of claim 10, wherein the method further
comprises: (1) after updating the first filter with the merged
conditioning node estimates, repeating the method starting at
().

15. A computer program product, comprising: a non-tran-
sitory computer readable medium having instructions stored
thereon executable by a processor to perform a method for
data sharing between a plurality of filters according to claim
10.

16. A system for data sharing between a plurality of filters,
the system comprising:

a first filter;

at least a second filter operating in parallel with the first
filter;

wherein the first filter has a first state vector (x, ), the second
filter has a second state vector (X,), the first filter esti-
mates a distribution of the first state vector that contains
afirst subset (x,) and a third subset (x_), the second filter
estimates a distribution of the second state vector that
contains a second subset (x,) and the third subset (x_),
such that:

x =[] and x,=[, b

wherein:
the first subset includes one or more unique states of the
first filter, the second subset includes one or more unique
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states of the second filter, and the third subset includes
one or more common states between the first and second
filters;

the first subset, the second subset, and the third subset are
selected such that the first subset and the second subset
are conditionally independent given the third subset; and

the third subset is a conditioning node for the first filter and
the second filter;

one or more processors in operative communication with
the first and second filters;

a non-transitory computer readable medium having
instructions stored thereon executable by the one or
more processors to perform a method for data sharing
comprising:

initializing the first filter and the second filter with the same
data measurement set, wherein the first filter has a first
probability density function estimate and the second
filter has a second probability density function estimate;

receiving a first independent measurement at the first filter;

updating the first probability density function estimate
with the first independent measurement;

receiving a second independent measurement at the second
filter;

updating the second probability density function estimate
with the second independent measurement;
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extracting a conditioning node estimate from the first filter;

extracting a conditioning node estimate from the second

filter;

combining the conditioning node estimates from the first

and second filters to produce a merged conditioning
node estimate;

running a conditional update for the first filter with the

merged conditioning node estimate; and

running a conditional update for the second filter with the

merged conditioning node estimate.

17. The system of claim 16, wherein the merged condition-
ing node estimate is produced using a track fusion algorithm.

18. The system of claim 16, wherein each of the first and
second filters is located in a separate module of a plurality of
modules, where the filters are probabilistically dependent
upon one another in a network.

19.The system of claim 18, wherein the network comprises
a singly-connected network.

20. The system of claim 16, wherein the first filter is located
in a first platform of a collaborative network, and the second
filter is located in a second platform of the collaborative
network.



